Use of lipophilic near-infrared dye in whole-body optical imaging of hematopoietic cell homing.

نویسندگان

  • Vyacheslav Kalchenko
  • Shoham Shivtiel
  • Victoria Malina
  • Kfir Lapid
  • Sharon Haramati
  • Tsvee Lapidot
  • Alexander Brill
  • Alon Harmelin
چکیده

We develop an optical whole-body imaging technique for monitoring normal and leukemic hematopoietic cell homing in vivo. A recently developed near-infrared (NIR) lipophilic carbocyanine dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR) is used to safely and directly label the membranes of human leukemic Pre-B ALL G2 cell lines as well as primary murine lymphocytes and erythrocytes. DiR has absorption and fluorescence maxima at 750 and 782 nm, respectively, which corresponds to low light absorption and autofluorescence in living tissues. This allows us to obtain a significant signal with very low background level. A charge-coupled device (CCD)-based imager is used for noninvasive whole-body imaging of DiR-labeled cell homing in intact animals. This powerful technique can potentially visualize any cell type without use of specific antibodies conjugated with NIR fluorescent tag or loading cells with transporter-delivered NIR fluorophores. Thus, in vivo imaging based on NIR lipophilic carbocyanine dyes in combination with advanced optical techniques may serve as a powerful alternative or complementation to other small animal imaging methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Advances and challenges in storage, transplantation, expansion and homing of Umbilical Cord Blood Hematopoietic Stem Cells (UCB-HSCs)

Abstract Background and Objectives Umbilical cord blood hematopoietic stem cells (UCB-HSCs) have high potential capabilities in the treatment of hematological and non-hematological disorders. Awareness of biology, self-renewal, homing, expansion, storage, and transplantation can lead to optimal use of these cells.   Materials and Methods In this Review article in order to investigate the adv...

متن کامل

Optical Imaging of the Motor Cortex in the Brain in Order to Determine the Direction of the Hand Movements Using Functional Near-Infrared Spectroscopy (fNIRS)

Introduction: In recent years, optical imaging has attracted a lot of attention from scholars as a non- aggressive, efficient method for evaluating the activities of the motor cortex in the brain. Functional near-infrared spectroscopy (fNIRS (is a tool showing the hemodynamic changes in a cortical area of the brain according to optical principles. The present study has been de...

متن کامل

Dynamic Near-Infrared Optical Imaging of 2-Deoxyglucose Uptake by Intracranial Glioma of Athymic Mice

BACKGROUND It is recognized that cancer cells exhibit highly elevated glucose metabolism compared to non-tumor cells. We have applied in vivo optical imaging to study dynamic uptake of a near-infrared dye-labeled glucose analogue, 2-deoxyglucose (2-DG) by orthotopic glioma in a mouse model. METHODOLOGY AND PRINCIPAL FINDINGS The orthotopic glioma model was established by surgically implanting...

متن کامل

Tracking Single Cells in Live Animals Using a Photoconvertible Near-Infrared Cell Membrane Label

We describe a novel photoconversion technique to track individual cells in vivo using a commercial lipophilic membrane dye, DiR. We show that DiR exhibits a permanent fluorescence emission shift (photoconversion) after light exposure and does not reacquire the original color over time. Ratiometric imaging can be used to distinguish photoconverted from non-converted cells with high sensitivity. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 11 5  شماره 

صفحات  -

تاریخ انتشار 2006